Innovation for Our Energy Future

The Growing Significance of Renewable Energy

Presented at New Mexico State University

February 23, 2007

Dan E. Arvizu

Director, National Renewable Energy Laboratory

Energy Solutions Are Enormously Challenging

Must address all three imperatives

How Big is the Challenge?

Source: Arvizu, NREL

World Energy Supply and the Role of Renewable Energy

U.S. Energy Consumption and the Role of Renewable Energy

Source: Energy Information Administration, Annual Energy Outlook 2006, Table D4

Carbon and Energy Intensity

Thinking Differently Account for Externalities

Today's energy marketplace does not appropriately "value" certain public objectives or social goods, instead we have:

- Price volatility
- Serious environmental impacts
- Underinvestment in energy innovation

Declining Energy R&D Investments...

Source: Daniel Kammen, Gregory Nemet Reversing the Incredible, Shrinking Energy R&D Budget http://rael.berkeley.edu/files/2005/Kammen-Nemet-ShrinkingRD-2005.pdf
Table 10.3, Edition 25, Transportation Energy Data Book http://cta.ornl.gov/data/chapter10.shtml

Declining Energy R&D Investments... Reflect World Oil Price Movement

Source: Daniel Kammen, Gregory Nemet Reversing the Incredible, Shrinking Energy R&D Budget
Table 10.3, Edition 25, Transportation Energy Data Book http://cta.ornl.gov/data/chapter10.shtml

**PREL National Renewable Energy Laboratory*

U.S. Energy Consumption and the Role of Renewable Energy

"...in the foreseeable future, the share of non-hydroelectric renewable electricity generation in the U.S. could grow to 10% or more by 2030 and to over 20% by midcentury."

PCAST Nov 2006

"Yes if" ... not... "no because."

Newt Gingrich

Source: OECD/IEA, 2004

Technology-Based Solutions: There is no single or simple answer

- Energy efficiency
- Renewable energy
- Nonpolluting transportation fuels
- Separation and sequestration of CO₂
- Next generation nuclear energy technologies
- Transition to distributed energy systems coupled with pollution-free energy carriers

Resources are Plentiful

Source: http://howto.altenergystore.com/Reference-Materials/Solar-Insolation-Map-World/a43/ Pacific Northwest National Laboratory

Impressive Cost Reductions

Worldwide Markets Have Driven Cost Reductions – Solar PV Example

Investing in the Future

Global Renewable Energy Annual Growth Rates 2000-2004

Energy-Tech Investments Percent of Total U.S. Venture Capital

\$2.7B invested in private clean energy firms in North America and Europe in 2006.

Sources:

Getting to "Significance" Involves...

Consistent Policies are Required for Long-Term Market Growth

- National goals
 - Biofuels: 30% of gasoline by 2030
 - Wind: 20% of electricity generation by 2030
 - Solar: Be market competitive by 2015 for Solar PV
- Infrastructure investments required to meet these goals, for example:
 - Biofuels: 30x30 analysis estimated infrastructure cost between \$8.5 and \$28.5B over 23 years

NREL Energy Efficiency and Renewable Energy Technology Development Programs

Efficient Energy Use

- Vehicle Technologies
- Building Technologies
- Industrial Technologies

Renewable Resources

- Wind
- Solar
- Biomass
- Geothermal

Energy Delivery and Storage

- Electricity
 Transmission and
 Distribution
- Alternative Fuels
- Hydrogen Delivery and Storage

Technology Innovation Challenges

- Wind
 - Next generation wind turbines
 - Improve energy capture by 30%
 - Decrease capital costs by 25%
- Solar photovoltaics
 - Improved performance through
 - process improvements
 - better materials
 - concentration
 - Harnessing nanostructures & new quantum effects
- Biofuels
 - Next generation biofuels
 - New feedstocks
 - Improved energy crops
 - Integrated biorefineries

Wind

Today's Status in U.S.

- 11,603 MW installed at end of 2006
- Cost 6-9¢/kWh at good wind sites*

DOE Cost Goals

- 3.6¢/kWh, onshore at low wind sites by 2012
- 7¢/kWh, offshore in shallow water by 2014

Long Term Potential

20% of the nation's electricity supply

NREL Research Thrusts

- Improved performance and reliability
- Distributed wind technology
- Advanced rotor development
- Utility grid integration

Evolution of U.S. Commercial Wind Energy

Solar

Photovoltaics and Concentrating Solar Power

Status in U.S.

PV

- 526 MW
- Cost 18-23¢/kWh

CSP

- 355 MW
- Cost 12¢/kWh

Potential:

PV

- 11-18¢/kWh by 2010
- 5-10 ¢/kWh by 2015

CSP

8.5 ¢/kWh by 2010 6 ¢/kWh by 2015

- Partnering with industry
- Higher efficiency devices
- New nanomaterials applications
- Advanced manufacturing techniques

CSP

- Next generation solar collectors
- High performance storage NREL National Renewable Energy Laboratory

. ...;;;;;;;

Source: U.S. Department of Energy, IEA Updated November 8, 2006

PV Module Production Experience (or "Learning") Curve

PV Module Production Experience (or "Learning") Curve

Technology Investment Pathways

Industry Driven

1st & 2nd Generation PV

lower Si feedstock prices
thinner Si wafer technology
thin films
improved processing
improved performance
advanced integration
advanced packaging

Basic Research Driven

Revolutionary (10 years and beyond)

3rd Generation PV

quantum dots nanotechnology multi-multijunctions thermophotonics intermediate band bio-inspired

Accelerated Evolutionary (3 years) Disruptive (3–10 years)

Technology Driven

2nd Generation PV

thin films concentrators organics Si wafers < 100 µm Si cells beyond 25%

The New Biofuels President Bush's "Twenty in Ten: Strengthening America's Energy Security"

- Reduce U.S. gasoline consumption 20% by 2017
 - Require 35 billion gallons of renewable and alternative fuels by 2017 to displace 15% of projected annual gasoline use
- President's 2008 Budget will
 - Include nearly \$2.7B for the Advanced Energy Initiative, an increase of 26% above the 2007 request
 - Provide \$179M for the President's Biofuels Initative, an increase of \$29M (19%) compared to the 2007 budget
- President's Farm Bill proposal will include more than \$1.6B of additional new funding over ten years for energy innovation, including bioenergy research and \$2B in loans for cellulosic ethanol plants

Biofuels

Current Biofuels status

- Biodiesel 91 million gallons¹ (2005)
- Corn ethanol (Nov. 2006)
 - 106 commercial plants²
 - 5.1 billion gallon/yr. capacity²
 - 3rd Q 2006 rack price highly variable \$3.50 – 5.50/gallon of gasoline equivalent (gge)³
- Cellulosic ethanol
 - Projected commercial cost ~\$3.50/gge

Key DOE Goals

- 2012 goal: cellulosic ethanol ~\$1.62/gge
- 2030 goal: 60 billion gal ethanol (30% of 2004 gasoline)

NREL Research Thrusts

- The biorefinery and cellulosic ethanol
- Solutions to under-utilized waste residues
- Energy crops

Significance of the 1.3 Billion Ton Biomass Scenario

Based on ORNL & USDA Resource Assessment Study by Perlach et.al. (April 2005) http://www.eere.energy.gov/biomass/pdfs/final_billionton_vision_report2.pdf

Reducing the Cost of Cellulosic Ethanol

From DOE GTL Bioenergy Roadmap

Systems Biology to Overcome Barriers to Cellulosic Ethanol

Feedstock Engineering

- Increase crop
 production
 (agronomics and
 plant engineering)
- Increase
 composition of
 desirable
 polysaccharides
 (cellulose)
- Decrease composition of undesirable polymers (lignins)

NREL "Corn Stem Tour"

Biofuels R&D

Technology Investment Pathways Renewable Fuels

Accelerated

Evolutionary

(3 years)

Revolutionary (10 years and beyond)

Industry Driven

Transportation Fuels

- · Bioethanol pilot plant
- · Technoeconomic analysis
- · Performance testing for industry
- · Biofuel cells
- · Rapid biomass analysis
- Process unit testing

30X30 Report OSC/EE Workshop on Cellulosic Ethanol IBRF Upgrade

Disruptive (3-10 years)

Basic Research Driven

Deep Understanding

- Systems biology & HTP
- Structural biology
- Computational science
- Biomass ultrastructure
- Advanced imaging tools
- Photosystem biochemistry
- Enzyme engineering
- Photoelectrochemistry

Technology Driven

Translational S&T

- · Process consolidation
- · Biological hydrogen
- · Photoelectrochemical hydrogen
- · Biomass pretreatments
- · Mapping the plant cell wall
- · Plant delignification
- Chemistry of biomass toxins

Harnessing Innovation in Renewable Energy Science and Technology:

The Future Promise

- Supercomputers
- Genomics
- Nanoscience
- Cellulosic and biofuels applications
- Hydrogen

Nano/Bio/Info

Promise of renewable energy is profound and can be realized if we...

- Aggressively seek a global sustainable energy economy
- Acknowledge and mitigate the carbon challenge with the necessary policies
- Accelerate investment in technology innovation

It is a matter of national will and leadership